3(x^2-2)=4(x+1)

Simple and best practice solution for 3(x^2-2)=4(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x^2-2)=4(x+1) equation:



3(x^2-2)=4(x+1)
We move all terms to the left:
3(x^2-2)-(4(x+1))=0
We multiply parentheses
3x^2-(4(x+1))-6=0
We calculate terms in parentheses: -(4(x+1)), so:
4(x+1)
We multiply parentheses
4x+4
Back to the equation:
-(4x+4)
We get rid of parentheses
3x^2-4x-4-6=0
We add all the numbers together, and all the variables
3x^2-4x-10=0
a = 3; b = -4; c = -10;
Δ = b2-4ac
Δ = -42-4·3·(-10)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{34}}{2*3}=\frac{4-2\sqrt{34}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{34}}{2*3}=\frac{4+2\sqrt{34}}{6} $

See similar equations:

| 2p+12=58. | | 28=(2w-5) | | -1+2d-2d=-13 | | 5(x+1)-6=3(1+x)+3 | | 35*x=9 | | 6/x-5+1/7=1 | | 3x-5=15x-9 | | 10+25x8=X | | -76x+76=76x-76 | | 10+25x8=Y | | 8x+6=2(2x+1 | | 13(y=3)=13y+39 | | 3x-4=9x-3 | | x*(x-0.3)=9 | | 10(x(1.5))=0 | | 6t+10=58 | | 4(x=1)^2+2(x=1)-4 | | 5m(2=22+15 | | 22x+2=42x-1 | | 4x-7=8x=33 | | 10d-10=9d+3 | | 170-x=150 | | P=2v/v | | 59-x=55 | | 20-11y=7 | | X-(x*0.1)=1500000 | | 2x^2+30=62 | | 2x^+30=62 | | 2x^2-9x+6.75=0 | | w+38=2w | | 2a-2(5a+9)=5(2a-11) | | 50x=300+20x |

Equations solver categories